

MERCURY \& SOLID STATE CONTACTORS • RELAYS - SWITCHES • LIQUID LEVEL CONTROL FLOATS

Catalog X

GENERAL INFORMATION FEATURES AND SELECHION FAGHORS

GENERAL INFORMATION

Mercury Displacement Relays are all designed and built to meet the most exacting demands of the industry. They have won their high place in the electrical field by doing the tough and tricky jobs that ordinary equipment could at best do in an uncertain manner. They have proven their ability to stand up to the most adverse conditions of temperature, dust and moisture, in all types of applications. All the care required for the manufacture of high-grade instruments is used in the manufacture of the switches. All switch parts are specially cleaned, and contamination is avoided by use of tweezers, gloves, etc., when making assemblies.
Contactors are hermetically sealed with high quality glass to metal seals.

The stainless steel tube is totally encapsulated in high grade epoxy

FEATURES

1) ADVANTAGE OVER ELECTROMECHANICAL AND SOLID STATE RELAYS

A) Superior Performance and Reliability
(a) Long Life
(b) Durable
B) Compact Size
C) Low, Predictable Contact Resistance
D) Reduced RFI for Improved Interface Capability
E) Handles a Variety of Loads
(a) Increases design flexibility
F) Rapid On-Off Cycling Capability
(a) Mercury quickly dissipates contact heat
G) Low Coil Power Requirements
H) Minimal Derating Due to Higher Ambient Temperatures
I) Quiet Action
2) DESIGN \& CONSTRUCTION
A) Contacts are within a hermetically sealed steel body
(a) Impervious to adverse condition
(b) No external arcing
B) Arcing is in a gaseous atmosphere
(a) Quenches the arc

SELECTION FACTORS

In order to get the right relay for your job -- the relay that will give you the best performance -- it is essential that certain information, concerning the conditions under which the relay must perform, be carefully considered. We therefore recommend that answers to the following questions be forwarded to us with your inquiry or order.

1) APPLICATION
a. What kind of job is relay to do?
b. Is application special in any way?
c. Will mounting be stationary?

2) TYPE OF LOAD

a. What is the voltage in the load circuit?
b. What is the amperage in the load circuit?
c. Is it A.C. or D.C.? If A.C., what is the frequency2?
d. What is the nature of the load?

Heater load?
Lamp load?
Motor load?
Current inrush and running current?
Other types of inductive load?
to prevent moisture damage and voltage breakdown through the protective coating.
The coils are wound on compact nylon bobbins and molded on to the metal tube to provide minimum power loss. This allows for low coil power required to actuate the contactor. This also enables the units to handle high loads with minimum derating due to higher ambient temperatures.
Internal gasses prevent excessive arcing between the mercury and the electrodes which enables the unit to function for millions of cycles with very low contact resistance, and minimum deterioration of the internal parts.
Available in all standard coil voltages, in single, two, three and four pole arrangements. Other coil voltages available upon request.
(b) Extends relay life
C) Only one moving part (the plunger)
(a) No buttons to pit, weld or burn out
D) One coil for each set of contacts
(a) Assures consistent switching
(b) Minimizes pull-in variation between contacts
E) Epoxy encapsulated
(a) Moisture resistant
(b) High dielectric strength
(c) Permanently fixes contacts to coil; eliminating possible misalignment
(d) Helps dissipate heat and noise
(e) Rugged (impact resistant)

3) BENEFITS

A) Reduction of Operational and Maintenance costs
B) Increases Utilization and Productivity of equipment
(a) By reducing down-time
C) Installation and service is a routine operation
(a) Simple to install
(b) No sophisticated equipment is required
(c) Easy to trouble-shoot

3) CONTACT ARRANGEMENT

a. Do you require a relay which has a normally open or normally closed contact?
4) DUTY
a. How often is relay to be operated?
b. How long is relay to be energized in each operation?
5) TIME DELAY CHARACTERISTICS
a. What operating time do you want to achieve, maximum and minimum seconds?
b. Is timing to be on closing or opening of the contacts?
6) COIL RATING
a. What is your maximum and minimum coil operating voltage or current?
b. Is coil to be operated from and A.C. or a D.C. circuit? If A.C., what frequency?
7) MOUNTING SPACE
a. Are there any limitations on space for applying relay?
CONTACTORS/RELAYS 4-20
30 AMP RELAY 5
L35/L60 AMP NORMALLY OPEN CONTACTORS 6
35/60 AMP NORMALLY OPEN CONTACTORS 7
35 AMP T-TOP CONTACTORS 8
35/60 AMP METAL STRAPPED CONTACTORS (INC. 4 POLE) 9
35/60 AMP NORMALLY CLOSED CONTACTORS 8
100 AMP CONTACTORS 10
COIL DATA 5-6, 11, 13
FUSING INFORMATION 20
HAZARDOUS LOCATIONS 7
HIGH VOLTAGE RATINGS 11
MERCURY TO METAL CONTACTORS AND RELAYS 4
MERCURY TO MERCURY CONTACTORS AND RELAYS 11
MOV'S 20
OPTIONAL TERMINATIONS AND MOUNTING PLATES 12
SIZING RELAYS/CONTACTORS 20
SOLID STATE RELAYS (3PSS SERIES) 15
SOLID STATE RELAYS (HPR SERIES) 16-17
CONTACTORS/RELAYS (CONTINUED)
SOLID STATE RELAYS (SSR SERIES) 18-19
TIME DELAY RELAYS 11
TORQUE INFORMATION 20
TRAFFIC CONTROL (CONSTANT DUTY) 7
WIRING AND FUSING AC RESISTIVE LOADS 20
RATINGS MERCURY \& SOLID STATE RELAYS/CONTACTORS 14
LIQUID LEVEL CONTROLS 21-25
FLOAT SWITCHES22-23
NDOOR WATER ALARM (SP-3000 \& SP-3100) 21
OUTDOOR TANK ALARM (SP-4000 \& SP-4100) 21
TWIN FLOAT SWITCH 25
VERTICAL SWITCH 24
MERCURY DISPOSAL 28
SWITCHES 26-27
DAMPER SWITCH 27
TILT SWITCH 26-27
TIP-OVER SWITCH 27
WARRANTY

GLOSSARY OF TERMS \& EXPRESSIONS

AMBIENT: The temperature of air or liquid surrounding any electrical part or device.
CONSTANT DUTY: If the contactor will remain "on" in normal use for indefinite periods of time, in excess of 100 hours.
CONTACTOR: 1.) A device for the purpose of repeatedly establishing or interrupting an electric power circuit; 2.) A heavy duty relay used to control electrical circuits. Relays rated at 15 to 30 amps and up are generally referred to as contactors.
CONTACT: 1.) One of the current-carrying parts of a relay, switch or connector that is engaged or disengaged to open or close the associated electrical circuits. 2.) To join two conductors or conducting objects in order to provide a complete path for current flow. 3.) The juncture point to provide the complete path.
CONTACTS: Mercury to Metal: The contacts of a standard mercury displacement relay or contactor. The upper contact is metal and stationary. The lower contact is a pool of mercury that gets displaced by the plunger assembly, thereby coming in contact with the metal electrode during operation. (See page 4.)

Mercury to Mercury: The contacts of a standard mercury timer relay. This contact arrangement utilizes a cup, which has the electrode in it, and is filled with mercury. When the mercury at the bottom of the unit is displaced, it floods over the sides of the cup, completing the circuit. This provides a clean make and break with no chatter and little erosion. (See page 11.)
CONTINUITY: A continuous path for the flow of current in an electric circuit.
DERATE: To reduce the voltage, current, or power rating of a device to improve it's reliability or to permit operation at high ambient temperatures.
DIELECTRIC: The insulating material between the metallic elements of an electronic component.
DROP-OUT: The current, voltage, or power value that will cause an energized relays contacts to return to their normal denergized condition.
GAUSS: The centimeter-gram-second electromagnetic unit of magnetic induction. One gauss represents one maxwell per square centimeter.
HEAT RISE: In a mercury displacement relay; The heat developed from the coil and contacts as a unit.
HERMETIC SEAL: A mechanical or physical closure that is impervious to moisture or gas, including air.
HERTZ: Cycles per second.
INRUSH CURRENT: In a solenoid or coil, the steady-state current drawn from the line with the armature, or plunger, in its maximum open position.
LOAD, CONTACT: The electrical power encountered by a contact set in any particular application.
MAXWELL: The cgs electromagnetic unit of magnetic flux, equal to one gauss per square centimeter, or one magnetic line of force.
OPERATE TIME: In a mercury displacement relay; the amount of time that passes when power is applied to the coil, to when the contacts close in a normally open set of contacts, or when the contacts open in a normally closed set of contacts.
Quick Operate is when the operate time is less than the stated release
time. Slow operate is when the operate time is no longer than the stated release time.
PLUNGER: In a mercury displacement relay; The device used to displace mercury. The plunger is lighter than mercury so it floats on the mercury. The plunger also contains a magnetic shell or sleeve, so it can be pulled down into the mercury with a magnetic field. The plunger does the same job in a mercury displacement relay as an armature in a mechanical relay.
POLE: 1.) Output terminals on a switch. 2.) A single set of contacts; (i.e., three sets of contacts equal three poles)
POWER FACTOR: Ratio of the actual power of an alternating or pulsating current to the apparent power.
PULL-IN: (Pick-up): The minimum current, voltage, power or other value which will trip a relay or cause it to operate.
RELAY: An electromechanical or electronic device in which continuity is established or interrupted in one circuit by a control circuit. Typically used to switch large currents by supplying relatively small currents to the control circuit. Also see Contactor.
RELEASE TIME: In a mercury displacement relay; The amount of time that passes when power is removed from the coil, until the contacts of a normally open unit reopen, or when contacts of a normally closed unit recloses.

Quick Release is when the release time is less than the stated operate time. Slow release is when the release time is longer than the stated operate time.
STEADY-STATE: A condition in which circuit values remain essentially constant, occurring after all initial transients or fluctuating conditions have settled down.
TRANSIENT (Transient Phenomena): Rapidly changing action occurring in a circuit during the interval between closing of a switch and settling to steady-state conditions, or any other temporary actions occurring after some change in a circuit or it's constants.
VOLT-AMPERE: A unit of apparent power in an AC circuit containing reactance. It is equal to the potential in volts multiplied by the current, in amperes, without taking phase into consideration.
VOLTAGE SPIKES: An abrupt transient which comprises part of a pulse but exceeds it's average amplitude considerably.
VOLTAGE WITHSTAND: The amount of electromotive force (volts) that can be applied to two points before a current will flow (leakage or breakdown.)
WATT: A unit of electrical power. One watt is expended when one ampere of direct current flows through a resistance of one ohm. In an AC circuit, the true power in watts is effective volt-amperes multiplied by the circuit power factor. There are 746 watts in one horsepower.

ABBREVIATIONS

A.C. Alternating Current $\quad \mathrm{Hg}$ Mercury
D.C. Direct Current Hz Hertz
M.D.R. Mercury Displacement Relay
D.P.S.T. Double Pole Single Throw
S.P.S.T. Single Pole Single Throw
T.P.S.T. Triple Pole Single Throw
N.C. Normally Closed
N.O. Normally Open

Q Quick
S Slow

DESCRIPTION

MERCURY TO METAL CONTACTOR: The load terminals are isolated from each other by the glass in the hermetic seal. "The plunger assembly," which includes the ceramic insulator, the magnetic sleeve and related parts, floats on the mercury pool. When the coil is powered causing a magnetic field, the plunger assembly is pulled down into the mercury pool which is in turn displaced and moved up to make contact with the electrode, closing the circuit between the top and bottom load terminal which is connected to the stainless steel can.

TRAFFIC CONTROL (CONSTANT DUTY) SP-1132- VOLTAGE- (A or D) 35 AMPS @ 600 VAC SP-1130- VOLTAGE- (A or D) 60 AMPS @ 480 VAC *A return spring replaces the buffer spring for this application

HOW TO ORDER
 SPECIFY AS SHOWN BELOW

EXAMPLE \#1

NOTES: 1) Other designations are $\mathbf{- 1}$ thru -99. These are suffix numbers, and are reserved for units with dead special detail, construction and/or features. -11 MOV on coil (see page 20), -13 MOV \& metal strap, -17 DIN rail mount, -20 DIN rail \& metal strap (see page 12), -18 metal strap (see page 9). (See example \#2).

EXAMPLE \#2
100NO-120AH-6A

The -6A stands for HIGH VOLTAGE contactor. Used in ultraviolet curing ovens and other high voltage applications. See page 11 for ratings.

SINGLE POLE

TWO POLE STANDARD MOUNT

TWO POLE UNIVERSAL MOUNT

THREE POLE STANDARD MOUNT

THREE POLE UNIVERSAL MOUNT

The 30 Amp series is a more compact line with a well proven switch which is the heart of mercury relays. It is the same switch design that is in our $23 / 8^{\prime \prime} 35$ and 60 Amp encapsulated MDR's, which have withstood the test of time and millions of cycles in many different applications.

TYPICAL SPECIFICATIONS

-ON NORMALLY OPEN UNITS: OPERATE TIME: 50 milliseconds RELEASE TIME: 80 milliseconds -contact resistance: $30-\mathrm{AmP}=.003 \mathrm{ohm}^{*}$ -DIELECTRIC WITHSTAND: 2500 VAC RMS - LONGEVITY: MILLIONS OF CYCLES

FILE \#E-62767 - TEMPERATURE RANGE:
$-35^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$

- COIL TERIMINALS: \#6 BINDING HEAD SCREWS - LOAD TERMINALS: \#8 BINDING HEAD SCREWS
- UL LISTING: FILE \#E62767
- C.S.A.: FILE \#LR41198
*AFTER CYCLING UNDER LOAD.

Catalog No.	Resistance	Current	V.A.	Watts
30NO-24D	180Ω	133 mA	3.2	3.2
230NO-24D	131Ω	188 mA	4.5	4.5
330NO-24D	73Ω	329 mA	7.9	7.9
30NO-24A	28Ω	316 mA	7.6	2.8
230NO-24A	12.5Ω	610 mA	14.6	4.7
330NO-24A	7.6Ω	815 mA	19.6	5.0
30NO-120A	725Ω	65 mA	7.8	3.1
230NO-120A	317Ω	118 mA	14.2	4.4
330NO-120A	210Ω	163 mA	19.6	5.6
30NO-220A	$3,150 \Omega$	27 mA	6.0	2.2
230NO-220A	$1,300 \Omega$	56 mA	12.3	4.1
330NO-220A	728Ω	86 mA	18.9	5.5

TWO POLE NORMALLY OPEN

The "L" version of the 35 and 60 amp normally open contractors are designed and manufactured to the same high quality specifications as the standard 35 and 60 amp models. The contactor switch is the same well proven design that has been manufactured since 1975. The mounting centers and physical size are identical to the standard single and two pole 35 and 60 amp molded versions.

The new design provides a cleaner appearance, and is a more economical design. It is available in the single and two pole models only, with top and bottom load terminals or with lead wires. Noted are the typical specifications and UL and CSA file numbers.

COIL DATA L35 AND L60 SERIES.

Catalog No.		Resistance	Current	V.A.	Watts
L35NO-24D	L60NO-24D	188Ω	135 mA	3.3	3.3
L235NO-24D	L260NO-24D	92Ω	260 mA	6.2	6.2
L35NO-24A	L60NO-24A	28Ω	325 mA	7.8	3.0
L235NO-24A	L260NO-24A	10.3Ω	660 mA	15.8	4.5
L35NO-120A	L60NO-120A	725Ω	75 mA	9.0	4.0
L235NO-120A	L260NO-120A	350Ω	115 mA	13.8	4.6
L35NO-220A	L60NO-220A	$3,150 \Omega$	27 mA	5.9	2.2
L235NO-220A	L260NO-220A	$1,000 \Omega$	69 mA	15.2	4.8

TYPICAL SPECIFICATIONS

- ON NORMALLY OPEN UNITS:

OPERATE TIME: 50 milliseconds RELEASE TIME: 80 milliseconds - CONTACT RESISTANCE:
$35-$ AMP $=.003 \mathrm{ohm}^{*}$
$60-$ AMP $=.002$ ohm*

- DIELECTRIC WITHSTAND:

2500 VAC RMS

- LONGEVITY:

MILLIONS OF CYCLES

- TEMPERATURE RANGE:
$-35^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$
- COIL TERMINALS:
\#6 BINDING HEAD SCREWS
- LOAD TERMINALS:

PRESSURE CONNECTORS FOR
A.W.G. \#4-\#14 ON 35-AMP AND
A.W.G. \#2-\#8 ON 60-AMP UNITS

- UL LISTING:

FILE \#E62767 FOR L35 AND
L60-AMP N.O. UNITS 1-2 POLES

- C.S.A.:

FILE \#LR41198 FOR L35 AND
L60-AMP N.O. UNITS 1-2 POLES

*AFTER CYCLING UNDER LOAD

35/60-AMP NORMALLY OPEN CONTACTORS

HAZARDOUS LOCATION \& TRAFFIC CONTROL

SINGLE POLE—NORMALLY OPEN

THREE POLE-NORMALLY OPEN

TYPICAL SPECIFICATIONS

- NORMALLY OPEN UNITS:

OPERATE TIME: 50 milliseconds RELEASE TIME: 80 milliseconds NORMALLY CLOSED UNITS:

OPERATE TIME: 30 milliseconds
RELEASE TIME: 35 milliseconds

- CONTACT RESISTANCE:

35 AMP $=.003$ ohm* 60 AMP = . 002 ohm*

- TEMPERATURE RANGE: $-35^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- COIL TERMINALS:
\#6 WIRE BINDING SCREWS
- LOAD TERMINALS:

PRESSURE CONNECTORS
FILE \#LR 41198
4 TO 14 AWG ON 35 AMP 2 TO 8 AWG ON 60 AMP - RATINGS:

SEE PAGE 13 FOR COIL DATA
SEE PAGE 14 FOR CONTACTS

- UL LISTING: FILE \#E-62767 FOR
- C.S.A.: FILE \# LR 41198 FOR
- TO ORDER SEE PAGE 4

HAZARDOUS LOCATIONS

SUFFIX "X"
Available in 1, 2 \& 3 Pole Units UL File E-71867
Auxiliary devices for use in hazardous locations
For CLASS 1, GROUPS A, B, C, \& D Division 2 only.

TRAFFIC CONTROL (CONSTANT DUTY)

SP-1132- VOLTAGE- (A or D) 35 AMPS @ 600 VAC SP-1130- VOLTAGE- (A or D) 60 AMPS @ 480 VAC
A return spring replaces the buffer spring for this application

* AFTER CYCLING UNDER LOAD

STANDARD MOUNTING SHOWN - SEE PAGE 12 FOR OPTIONS

TWO POLE-NORMALLY OPEN

(4L)
FILE \#E-62767

35/60-AMP NORMALLY CLOSED CONTACTORS

SIMILAR CONSTRUCTION AS THE NORMALLY OPEN UNITS BUT WITH THE COIL POSITIONED CLOSER TO THE TOP OF THE CONTACTOR AND A NORMALLY CLOSED CONTACTOR IN PLACE OF A NORMALLY OPEN CONTACTOR. ALSO AVAILABLE IN THREE AND FOUR POLE UNITS.

FILE \#LR 41198

35/60-AMP METAL STRAPPED CONTAGTORS

Add suffix -18 to catalog number for metal strap, i.e. 335NO-120A-18

SINGLE POLE-NORMALLY OPEN

TWO POLE-NORMALLY OPEN

FILE \#E-62767

THREE POLE-NORMALLY OPEN

FOUR POLE-NORMALLY OPEN

NORMALLY OPEN
For UV Curing, and Various High Voltage applications. Available in Single Pole, Normally Open, and Normally Closed Units. The coils utilize 6-32 Wire Binding Screws, and the Contacts use Compression type terminals for \#2 thru \#8 AWG wire.

RATINGS ARE:

10 AMPS @ 3500 VAC
15 AMPS @ 2500 VAC
AC INDUCTIVE Power Factor . 7 or Greater.

COIL DATA

Catalog Number	Coil Voltage	Resistance	Current Draw	Wattage	V.A.
100NC-24D-6A	24 VDC	121Ω	198 mA	4.8	4.8
100NC-120A-6A	120 VAC	380Ω	125 mA	5.9	15.0
100NC-220A-6A	220 VAC	$1,400 \Omega$	76 mA	8.1	16.7
100NO-12DH-6A	12 VDC	16Ω	750 mA	9.0	9.0
100NO-24AH-6A	24 VAC	16Ω	760 mA	9.2	18.2
100NO-24DH-6A	24 VDC	65Ω	370 mA	8.9	8.9
100NO-120AH-6A	120 VAC	380Ω	158 mA	9.5	19.0
100NO-220AH-6A	220 VAC	$1,400 \Omega$	90 mA	11.3	19.8

TIME DELAY RELAYY

MDI's Time Delay CONTACT ACTION is designated as follows:
DOO: Delay on operate, normally open
DORO: Delay on operate and release, normally open DRO: Delay on release, normally open
DORC: Delay on operate and release, normally closed
DRC: Delay on release, normally closed
HOW TO ORDER Specify as shown below

TIME DELAY RELAYS Are available with delays of up to 15 seconds on normally open units, and 4 seconds on normally closed units. The timing limitation depends on the contact action required. A time delay function is accomplished in this unit by sizing a hole in the time disc that will control the rate of the mercury flow. This controls the time it will take from the instant the coil is powered until the mercury pools make contact with each other, closing the circuit between the load terminals. Typical contact ratings 10 AMP @ 120 VAC. Pilot duty rating 720 VA. Common coil voltages are available. Standard load terminals are compression type. Coil terminals use \#6 binding head screws.

OPTIONAL 35 \& 60 AMP CONTACTORS \& TIMER MOUNTING PLATES

SP-1214
2" wide, narrow mount two pole 30 amp. catalog number SP-1214 followed by the coil voltage, then "D" for DC.
Example: SP-1214-120A

路

"P" PANEL MOUNT
For 35, 60-amp or standard timer; with standard mounting bracket. The standard mounting bracket attaches to the panel with two 6-32 screws. Material: 3/8" thick phenolic.

"U" UNIVERSAL BRACKET
For single pole, 35 and 60 -amp units, and for timers. This is the standard bracket for hybrid timers. Material: 16-ga. plated steel.

CATALOG NUMBER	VOLTAGE	RESISTANCE (D.C. OHMS)	CURRENT (MILLIAMPERES)	VOLT AMPERES (V/A)	$\begin{aligned} & \hline \text { POWER } \\ & \text { (WATTS) } \end{aligned}$
30 AMP SERIES (SEE PAGE 5)	$\begin{gathered} \text { SEE } \\ \text { PAGE } 5 \end{gathered}$	$\begin{gathered} \text { SEE } \\ \text { PAGE } 5 \end{gathered}$	$\begin{gathered} \text { SEE } \\ \text { PAGE } 5 \end{gathered}$	$\begin{gathered} \text { SEE } \\ \text { PAGE } 5 \end{gathered}$	$\begin{gathered} \text { SEE }^{\text {PAGE }} 5 \end{gathered}$
35NO-24A	24 VAC	50Ω	242 mA	5.8 V/A	2.9 W
35NO-120A	120 VAC	1,250 Ω	53 mA	6.4 V/A	3.5 W
35NO-208A	208 VAC	3,400 Ω	30 mA	6.2 V/A	3.1 W
35NO-220A	220 VAC	4,800 Ω	28 mA	6.2 V/A	3.8 W
35NO-277A	277 VAC	7,900 Ω	20 mA	5.5 V/A	3.2 W
35NO-480A	480 VAC	20,000 Ω	12 mA	$5.9 \mathrm{~V} / \mathrm{A}$	3.0 W
35NO-6D	6 VDC	13Ω	462 mA	2.8 V/A	2.8 W
35NO-12D	12 VDC	36Ω	333 mA	$4.0 \mathrm{~V} / \mathrm{A}$	4.0 W
35NO-24D	24 VDC	176Ω	136 mA	$3.3 \mathrm{~V} / \mathrm{A}$	3.3 W
35NO-48D	48 VDC	636Ω	75 mA	$3.6 \mathrm{~V} / \mathrm{A}$	3.6 W
35NO-125D	125 VDC	3,400 Ω	37 mA	$4.6 \mathrm{~V} / \mathrm{A}$	4.6 W
35NO-250D	250 VDC	14,800 Ω	17 mA	4.2 V/A	4.2 W
35NC-24A	24 VAC	36Ω	310 mA	7.4 V/A	3.5 W
35NC-120A	120 VAC	860Ω	65 mA	7.8 V/A	3.6 W
35NC-220A	220 VAC	3,400 Ω	31 mA	6.8 V/A	3.3 W
35NC-12D	12 VDC	36Ω	333 mA	$4.0 \mathrm{~V} / \mathrm{A}$	4.0 W
35NC-24D	24 VDC	176Ω	136 mA	3.3 V/A	3.3 W
35NC-48D	48 VDC	560Ω	86 mA	4.1 V/A	4.1 W
35NC-125D	125 VDC	3,400 Ω	37 mA	$4.6 \mathrm{~V} / \mathrm{A}$	4.6 W
60NO-24A	24 VAC	50Ω	259 mA	6.2 V/A	3.4 W
60NO-120A	120 VAC	1,250 Ω	48 mA	5.8 V/A	2.9 W
60NO-208A	208 VAC	3,400 Ω	30 mA	6.2 V/A	3.1 W
60NO-220A	220 VAC	4,800 Ω	27 mA	5.9 V/A	3.5 W
60NO-277A	277 VAC	7,900 Ω	19 mA	5.3 V/A	2.9 W
60NO-480A	480 VAC	20,000 Ω	12 mA	5.8 V/A	2.9 W
60NO-12D	12 VDC	36Ω	333 mA	4.0 V/A	4.0 W
60NO-24D	24 VDC	176Ω	136 mA	$3.3 \mathrm{~V} / \mathrm{A}$	3.3 W
60NO-48D	48 VDC	636Ω	75 mA	3.6 V/A	3.6 W
60NO-125D	125 VDC	3,400 Ω	37 mA	$4.6 \mathrm{~V} / \mathrm{A}$	4.6 W
60NO-250D	250 VDC	14,800 Ω	17 mA	$4.3 \mathrm{~V} / \mathrm{A}$	4.3 W
60NC-24A	24 VAC	36Ω	325 mA	7.8 V/A	5.3 W
60NC-120A	120 VAC	860Ω	69 mA	8.3 V/A	4.1 W
60NC-220A	220 VAC	3,400 Ω	34 mA	7.5 V/A	3.9 W
60NC-277A	277 VAC	7,900 Ω	26 mA	7.3 V/A	5.5 W
60NC-12D	12 VDC	36Ω	333 mA	4.0 V/A	4.0 W
60NC-24D	24 VDC	140Ω	171 mA	4.1 V/A	3.3 W
60NC-48D	48 VDC	560Ω	86 mA	4.1 V/A	4.1 W
60NC-125D	125 VDC	3,400 Ω	37 mA	$4.6 \mathrm{~V} / \mathrm{A}$	4.6 W
100NO-24A	24 VAC	16Ω	646 mA	15.5 V/A	6.7 W
100NO-120A	120 VAC	380Ω	137 mA	16.4 V/A	7.1 W
100NO-220A	220 VAC	1,400 Ω	73 mA	16.1 V/A	7.5 W
100NO-277A	277 VAC	2,400 Ω	55 mA	15.2 V/A	7.3 W
100NO-480A	480 VAC	6,300 Ω	35 mA	16.8 V/A	7.7 W
100NO-24D	24 VDC	65Ω	369 mA	8.9 V/A	8.9 W
100NO-48D	48 VDC	350Ω	137 mA	6.6 V/A	6.6 W
100NO-125D	125 VDC	2,400 Ω	52 mA	6.5 V/A	6.5 W
100NC-24A	24 VAC	16Ω	515 mA	12.4 V/A	4.2 W
100NC-120A	120 VAC	380Ω	110 mA	13.2 V/A	4.6 W
100NC-208A	220 VAC	1,400 Ω	55 mA	11.4 V/A	4.2 W
100NC-240A	240 VAC	1,685 Ω	49 mA	11.8 V/A	4.0 W
100NC-480A	480 VAC	6,300 Ω	27 mA	13.0 V/A	4.6 W
100NC-12D	12 VDC	28Ω	433 mA	5.2 V/A	5.2 W
100NC-24D	24 VDC	121Ω	198 mA	4.8 V/A	4.8 W
100NC-48D	48 VDC	380Ω	126 mA	6.1 V/A	6.1 W
100NC-125D	125 VDC	2,400 Ω	52 mA	6.5 V/A	6.5 W

NOTES: 1. Inrush current = 1.5 times the steady state current. (No inrush on DC coils).
2. Minimum operation voltage is 90% of nominal voltage.
3. All AC voltages are $50 / 60 \mathrm{~Hz}$.
4. For other coils voltages contact the factory
5. Ratings shown are per pole. (Coils are in parallel).

KEY:
SHADED AREA FOR UL LISTING AND/OR COMPONENT RECOGNITION. - NOT RECOMMENDED FOR THIS TYPE OF LOAD.

SOLID STATE RELAY RATINGS

CATALOG NUMBER	HPR48A25 HPR48D25	HPR48A50 HPR48D50	HPR48A75 HPR48D75	3PSS60A75

SOLID STATE RELAYS

Models: 3PSS60A75 S (Standard Din-rail) Industrial, 3-Phase SS 3PSS60A75 R (Retro Fit)

Product Description

A Solid State Relay family The built-in varistor is for designed to switch various heavy industrial applicaloads such as heating ele- tions. For higher reliability ments, motors and trans- and load cycle capability formers. The relay is cap- three semiconductor power able of switching voltages units are bonded directly to up to 600 VAC rms. the substrate.

Tested and Approved

3 Pole 50 AMPS @ 480 VAC @ $-30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} 3$-Phase 2 Pole 75 AMPS @ 480 VAC @ $-30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} 3$-Phase * $51^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ derates @ 10 AMPS per decade
*For 2 Pole usage, use L1 \& L3

- 3-phase Solid State Relay
- Zero switching
- Rated operational current: 3×75 AMPS
- Rated operational voltage: 600 VAC
- Control voltage 24-50 VDC/24-275 VAC
- Integral snubber network
- Built-in varistor
- IP 10 back-of-hand protection
- LED indication of control input
- Heat Sink and 24 VDC Fan Included

E 62767

General Specifications

Operational voltage range	$42-660$ VAC 45 to 65 Hz
Blocking voltage	$1600_{\mathrm{p}} \mathrm{V}$
Over voltage category III	$\mathrm{Pollution} \mathrm{degree} 3^{\text {Operating temperature }}$
-30° to $80^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	
Storage temperature	-40° to $100^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.212^{\circ} \mathrm{F}\right)$
Input to output isolation voltage	≥ 4000 VAC rms
Output to case isolation voltage	≥ 4000 VAC rms
Heat Sink Fan requires	70 mA @ 24 VDC
Markings	coNus C $€$

Input Specifications

Control voltage range	$24-275 \mathrm{VAC} / 24-50 \mathrm{VDC}$	
Pick-up voltage	$18 \mathrm{VAC} / 20 \mathrm{VDC}$	
Drop-out voltage	$9 \mathrm{VAC} / \mathrm{DC}$	
Input current	$\leq 15 \mathrm{~mA}$	
Response time pick-up (Power output $=50 \mathrm{~Hz})$	20 ms	
Response time drop-out (Power output $=50 \mathrm{~Hz})$	30 ms	
All data specified at Ta=25		

SOLID STATE RELAYS continued

Type HPR48 Industrial, 1-Phase ZS (IO) w. LED and Built-in Varistor

Product Description

The industrial, 1-phase relay with anti parallel thyristor output is the most widely used industrial SSR due to its multiple application possibilities. The relay can be used for resistive, inductive and capacitive loads. The zero switching relay switches ON when the sinusoidal curve crosses zero and switches OFF when the current crosses

The instant-on relay with DC control input can be used for phase control. The built in varistor secures transient protection for the heavy industrial applications, and the LED indicates the status of the control input. The clip on cover is securing touch protection to IP 20. Protected output terminals can handle cables up to $16 \mathrm{~mm}^{2}$ (6 AWG).

General Specifica	HPR48...
Operational voltage range	42 to 530 VAC rms
Blocking voltage	$\geq 1200 \mathrm{~V}_{\mathrm{p}}$
Zero voltage turn-on	$\leq 10 \mathrm{~V}$
Operational frequency range	45 to 65Hz
Power factor	> 0.5 @ 480 VAC rms
Markings	c.alus C

Thermal Specifications

	HPR... 25	HPR... 50	HPR... 75
Operating temperature range	-20° to $70^{\circ} \mathrm{C}\left(36^{\circ}\right.$ to $\left.126^{\circ} \mathrm{F}\right)$	-20° to $70^{\circ} \mathrm{C}\left(36^{\circ}\right.$ to $\left.126^{\circ} \mathrm{F}\right)$	-20° to $70^{\circ} \mathrm{C}\left(36^{\circ}\right.$ to $\left.126{ }^{\circ} \mathrm{F}\right)$
Storage temperature range	-40° to $100^{\circ} \mathrm{C}\left(72^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$	-40° to $100^{\circ} \mathrm{C}\left(72^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$	-40° to $100^{\circ} \mathrm{C}\left(72^{\circ}\right.$ to $\left.180^{\circ} \mathrm{F}\right)$
Junction temperature	$\leq 125^{\circ} \mathrm{C}\left(225^{\circ} \mathrm{F}\right)$	$\leq 125^{\circ} \mathrm{C}\left(225^{\circ} \mathrm{F}\right)$	$\leq 125^{\circ} \mathrm{C}\left(225^{\circ} \mathrm{F}\right)$
$\mathrm{R}_{\text {th }}$ junction to case	$\leq 0.80 \mathrm{~K} / \mathrm{W}$	$\leq 0.50 \mathrm{~K} / \mathrm{W}$	$\leq 0.35 \mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th }}$ junction to ambient	$\leq 20.0 \mathrm{~K} / \mathrm{W}$	$\leq 20.0 \mathrm{~K} / \mathrm{W}$	$\leq 20.0 \mathrm{~K} / \mathrm{W}$

Functional Diagram

- Zero switching
- Direct copper bonding (DCB) technology
- LED indication
- Built-in varistor 480 V
- Clip-on IP 20 protection cover
- Self-lifting terminals
- Housing free of moulding mass
- Blocking voltage: 1200V
- Opto-isolation: > 4000 VAC rms
- 2 input ranges: 4-32 VDC and 20-280 VAC/22-48 VDC
- Operational ratings: Up to 75 AMPS rms
- Rated voltage: 480 VAC rms

Type Selection

Control voltage		Rated operation current
A: $20-280$ VAC/22-48 VDC		
D: 25 AMPS rms		
D: $4-32$ VDC		50: 50 AMPS rms
		$75: 75$ AMPS rms

Input Specifications	HPR..D..	HPR..A..					
Control voltage range	$4-32$ VDC	$20-280$ VAC					
$22-48$ VDC			$	$	Pick-up voltage @ $\mathrm{Ta}=25^{\circ} \mathrm{C}$	3.5 VDC	18 VAC/DC
:---	:---	:---:					
Reverse voltage	32 VDC	-					
Drop out voltage	1.2 VDC	$\mathbf{6}$ VAC/DC					
Input current @ max voltage	$\leq 12 \mathrm{~mA}$	$\leq 20 \mathrm{~mA}$					
Response time pick-up	$\leq 1 / 2$ cycle	$\leq 12 \mathrm{~ms}$					
Response time drop-out	$\leq 1 / 2$ cycle	$\leq 40 \mathrm{~ms}$					

Dimensions

Heatsink Data

(load current versus ambient temperature)

HPR... 25							
Load current [A]			Thermal resistance [K/W]			Power dissipation [W]	
25.0	2.70	2.34	1.98	1.61	1.25	0.89	28
22.5	3.10	2.69	2.28	1.86	1.45	1.04	24
20.0	3.61	3.13	2.65	2.18	1.70	1.23	21
17.5	4.26	3.70	3.14	2.59	2.03	1.47	18
15.0	5.14	4.47	3.80	3.14	2.47	1.80	15
12.5	6.38	5.56	4.73	3.91	3.09	2.27	12
10.0	8.25	7.19	6.14	5.08	4.02	2.97	9
7.5	11.4	9.94	8.49	7.04	5.59	4.14	7
5.0	17.7	15.4	13.2	11.0	8.74	6.51	4
2.5	-	-	-	-	18.2	13.6	2
	20	30	40	50	60	$70^{\circ} \mathrm{C}$	
	68	86	104	122	140	$158^{\circ} \mathrm{F}$	T_{A}

Junction to ambient thermal resistance, $\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	< 20.0	K/W
Junction to case thermal resistance, R	< 0.80	K/V
Case to heatsink thermal resistance, R	< 0.20	K/W
Maximum allowable case temperature	100 (212)	C (F)
Maximum allowable junction temperature	125 (257)	C (F)

Junction to am	< 20.0	K/W
Junction to case thermal resistance, R	< 0.50	K/
Case to heatsink thermal resistance, R	< 0.20	K/W
Maximum allowable case temperature	100 (212)	C (F)
Maximum allowable junction temperature	125 (257)	C (F)

Isolation

Rated isolation voltage
4000 VAC rms
Input to output
Rated isolation voltage 4000 VAC rms Output to case

Heatsink Selection

Heatsink	Thermal resistance...	..for power dissipation
HS 45CD	$2.70 \mathrm{~K} / \mathrm{W}$	$>60 \mathrm{~W}$
HS 45BD	$2.00 \mathrm{~K} / \mathrm{W}$	$>60 \mathrm{~W}$
Consult MDI	$>0.25 \mathrm{~K} / \mathrm{W}$	N/A

HPR... 75							
Load current [A]		Thermal resistance [K/W]				Power dissipation [W]	
75.0	0.91	0.78	0.65	0.52	0.39	0.26	77
67.5	1.10	0.96	0.81	0.66	0.51	0.36	68
60.0	1.34	1.17	1.00	0.83	0.66	0.49	59
52.5	1.60	1.40	1.20	1.00	0.80	0.60	50
45.0	1.93	1.68	1.44	1.20	0.96	0.72	42
37.5	2.38	2.08	1.78	1.49	1.19	0.89	34
30.0	3.06	2.68	2.30	1.91	1.53	1.15	26
22.5	4.21	3.68	3.16	2.63	2.10	1.58	19
15.0	6.51	5.70	4.88	4.07	3.26	2.44	12
7.5	13.5	11.77	10.09	8.41	6.73	5.04	6
	$\begin{aligned} & \hline 20 \\ & 68 \end{aligned}$	$\begin{aligned} & \hline 30 \\ & 86 \end{aligned}$	$\begin{gathered} \hline 40 \\ 104 \end{gathered}$	$\begin{gathered} \hline 50 \\ 122 \end{gathered}$	$\begin{gathered} 60 \\ 140 \end{gathered}$	$\begin{gathered} 70^{\circ} \mathrm{C} \\ 158^{\circ} \mathrm{F} \end{gathered}$	T_{A}

Ambient temp.

Junction to ambient thermal resistance, $\mathrm{R}_{\text {th } j-2}$	< 20.0	K/W
Junction to case thermal resistance, R	< 0.35	K/W
Case to heatsink thermal resistance, R	< 0.10	K/W
Maximum allowable case temperature	100 (212)	C (F)
Maximum allowable junction temperature	125 (257)	C (F)

SOLID STATE RELAYS Continued

20, 30, 50 \& 70 AMP RELAYS WITH INTEGRATED HEATSINKS

- AC Semiconductor contactor
- Zero switching
- Direct-Copper bonding (DCB) technology
- LED indication
- Cage Clamp terminals
- 2 input ranges: 4-32 VDC \& 24-274 VAC/24-48 VDC
- Operational ratings: 20-70 AMPS AC rms @ 600 VAC
- Non-repetitive voltage: Up to 1200 Vp
- Opto isolation: > 4000 VAC rms
- Operating temperature: -30° to $+80^{\circ} \mathrm{C}$
- Junction temperature: $125^{\circ} \mathrm{C}$ on 20,30 \& 70 AMP
- Junction temperature: $120^{\circ} \mathrm{C}$ on 50 AMP

PRODUCT DESCRIPTION: MDI Solid State Relays are advantageous in industrial heating applications requiring high cycle rates. These relays have integral heat sinks and are ready to mount on chassis or DIN-rail.

The standard housing dimensions enable straightforward replacement of alternative products and allow for two standard

SELECTION GUIDE
MODEL CURRENT VOLTAGE RATED CURRENT

SELECTION GUIDE		
MODEL	CURRENT VOLTAGE	RATED CURRENT
SS20AE	24-275 VAC 24-48 VDC	20 AMP
SS20AU	24-275 VAC 24-48 VDC	20 AMP
SS20DE	4-32 VDC	20 AMP
SS20DU	4-32 VDC	20 AMP
SS30AU	24-275 VAC 24-48 VDC	30 AMP
SS30DU	4-32 VDC	30 AMP
SS50AE	24-275 VAC $24-48$ VDC	50 AMP
SS50AU	24-275 VAC 24-48 VDC	50 AMP
SS50DE	4-32 VDC	50 AMP
SS50DU	4-32 VDC	50 AMP
SS70AU	24-275 VAC 24-48 VDC	70 AMP
SS70DU	4-32 VDC	70 AMP

terminal configurations. Cage clamp terminals are used to ensure secure load connection.

An LED indicates the status of the control input. The superior heat-transfer efficiency combined with a robust power management system makes this a high reliability product that can meet the most stringent functional requirements.

Panel mounting

Derating Curve SS50

Terminal Layout

SS...E

$\bigcirc \bigcirc$		$\bigcirc \bigcirc$
$\mathrm{LH}^{\text {A }}$	L1 = LINE	A2 2 A1
	T1 = LOAD	
T1 A2	A1 CONTROL A2 VOLTAGE	T1 L1
$\bigcirc \bigcirc$		$\bigcirc \bigcirc$

SS...U

WIRING \& FUSING

MERCURY CONTACTORS

SOLID STATE

Single pole relay application Line-Neutral, Line-Line

2 single pole relays in 3-phase application Delta and star connection (economy switch)

3 single pole relays in 3-phase application Delta, Star, Star with neutral

Proper Fusing is Required

1. While MDI Mercury contactors handle high inrush, such as lamps, mercury contactors are susceptible to damage by short circuit currents, and should be fused to minimize short circuit fault currents. UL class RK-1 and class J fuses and semiconductor 12 t fuses more effectively protect relays. These are low current-peak fuses designed to limit short circuit currents. Regardless, when there is a short circuit, relay operations should be closely monitored afterward because of the possibility of concealed damage that could cause the relays to behave inconsistently.
-RECOMMENDED-

$\frac{250 \text { VOLT }}{\text { KTN-R }}$		$\frac{600 \text { VOLT }}{\text { KTS-R }}$
JJN/A3T		JJS
		JKS/A4J
		KTK-R

2. For sizing of relay see below
3. For data on standard coils see pages 5,6, 11, \& 13.
4. MDI RELAYS must mount vertically, $\pm 10^{\circ}$.
5. Control line can be protected with metal oxide varistors (MOV). Use suffix -11.
6. Disconnect power before installing or servicing. Observe all electrical and safety codes and ordinances such as national electric code (NEC) and the occupational safety and health act (OSHA).

TORQUE SPECIFICATIONS

- For coils 8 in. Lb. max.
- For line and load terminals see ratings labels.

SIZING RELAY	3 Ø AC	FACTOR
To find AMPS per pole	208 V	2.776
3 Ø Balanced Heater loads	220 V	2.624
MPS per pole $=$ KW X 1,000	240 V	2.406
VOLTS X 1.732	277 V	2.084
ultiply the kilowatts times	480 V	1.203
he appropriate factor	600 V	0.962

MOV CHART

FOR	SIEMENS	HARRIS	C.K.E.	M.D.I.
24 VOLTS	S14K30	V47ZA7	-	PM-567-5
120 VOLTS	S20K130	V150LA20B	Z150LA20B	PM-567-1
220 VOLTS	S20K275	V275LA40B	Z275LA40B	PM-567-2
277 VOLTS	S20K385	V320LA20B	Z320LA20B	PM-567-3

SP-3000 ALARM - BBLA INDOOR ALARM WITH XF20Y1500 MECHANICAL FLOAT SP-3100 ALARM - BBLA INDOOR ALARM WITH AS2OY1500 MERCURY FLOAT

The BBLA alarm system is designed to monitor liquid levels in sump basins, holding tanks, lift stations tanks and many other non-potable water and wastewater applications. Comes individually boxed with Cable tie and Instruction sheet.

Auxiliary contacts with common, normally open and normally closed terminals are available behind a panel, on the lower right side, held in place by two \#1 Phillips head screws. The barrier terminal screws are Phillips/Standard slot combo head type.

The BBLA is design to sound a piezo horn and illuminate a red light to notify of an alarm situation. There is a green line voltage power indicator light to show that the unit is functioning, as well as a silence switch to turn horn off while fixing the alarm (the red alarm light will remain on until the alarm conditions are remedied).

SPECIFICATIONS

- Dimensions
- Enclosure
- Horn
- Weight
- Voltage
- Power cord
- External block connection
- Auxiliary contacts
- Battery Back Up

7" X 4 " X 2 1/2"
NEMA 1 thermoplastic (external mounting feet)
85 dB
$11 / 3$ pounds
Primary: 120 VAC, Secondary 12 VAC, 60 Hz (Alarm condition 2.5 Watts max) 6 feet 120 VAC (NEMA 5-15P)
Float connection. DO NOT APPLY POWER! Class Two Output, 12 VAC 120 VAC, 5 AMPS max 60 Hz 9 Volt

OUTDOOR TANK ALARNO

SP-4000 ALARM - OTA OUTDOOR ALARM WITH NF2OW1500 MECHANICAL FLOAT

 SP-4100 ALARM - OTA OUTDOOR ALARM WITH CG2OY1500 MERCURY FLOAT

The OTA alarm system is designed to monitor liquid levels in sump basins, holding tanks, lift stations tanks and many other non-potable water and wastewater applications. Comes individually boxed with Cable tie and Instruction sheet.

This alarm comes in a Type 4X non-metalic enclosure with external mounting feet and a gasketed door for outdoor use. It has a large red illuminating beacon, front cover mounted piezo, with Test and Silence push button switches.

The OTA is design to sound an audible piezo horn and illuminate the red beacon light to notify of an alarm situation. There is a silence switch to turn the piezo horn off while fixing the alarm (the red alarm light will remain on until the alarm conditions are remedied).

SPECIFICATIONS

- Dimensions
- Enclosure
- Piezo Horn
- Weight
- Voltage
- Power cord
- Float connection

8" X 4 1/2" X 4 1/4" (NEMA 3R)
Type 4X non-metalic enclosure rated for indoor or outdoor use
85 dB
2 pounds
Primary: 120 VAC, Secondary 12 VAC, 60 Hz 6 Watts max.
6 feet 120 VAC (NEMA 5-15P)
External block connection

```
    BASIC SWITCH SERIES
    MERCURY
    A - TS-1
    1 AMP @ 120 VAC Pilot Duty 10
    B - WATS-1
    1 AMP @ 120 VAC Pilot Duty 90
    C - TS-10
    13 AMPS @ 120 VAC / 5 AMPS @ 240 VAC 10
        D - NATS-20
    13 AMPS @ 120 VAC / 6 AMPS @ 240 VAC 30
    E - WATS-20
    13 AMPS @ 120 VAC / 6 AMPS @ 240 VAC 90
    MECHANICAL
    G - 1/2 H.P. 13/15 AMPS 90
    H-1 and 2 H.P. }15\mathrm{ AMPS 90
    K - 10 AMPS Pilot Duty Narrow Angle Tetherless
    L-1 & 2 H.P. 25 AMPS 90
    N - 10 AMPS Pilot Duty Narrow Angle 35'
    P - 1/2 H.P. Narrow Angle 25
    R-1/2 H.P. Narrow Angle Tetherless
    S - Small }5\mathrm{ AMPS 120/250 VAC 90
    X - Small }5\mathrm{ AMPS 120/250 VAC Narrow Angle 15
        MERCURY
```


FLOAT SIZE \& STANDARD COLOR CODE

NORMALLY OPEN	NORMALLY CLOSED	BASIC SWITCH SERIES
S-SMALL MERCURY BLACK ABS ONLY	S-SMALL MERCURY BLACK ABS ONLY	A \& B SERIES
M-MERCURY BLACK HIPS ONLY	B-MERCURY YELLOW HIPS ONLY	C, D, \& E SERIES
F-SMALL MECHANICAL BLACK ABS ONLY	F-SMALL MECHANICAL BLACK ABS ONLY	S \& X SERIES
DOUBLE THROW F-SMALL MECHANICAL BLACK ABS ONLY		
F-MECHANICAL BLACK HIPS \& ABS	Y-MECHANICAL YELLOW W-MECHANICAL WHITE ABS ONLY	G, H, K, L, P \& R SERIES
DOUBLE G-MECHANICAL G	THROW EEN ABS ONLY	G, H, K, P \& R SERIES
$82^{\circ} \mathrm{C} / 180^{\circ} \mathrm{F}$ R-MECHANICAL RED ABS ONLY	$82^{\circ} \mathrm{C} / 180^{\circ} \mathrm{F}$ B-MECHANICAL BLUE ABS ONLY	G, H, K, L, P \& R SERIES
$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$ T-MECHANICAL TEEL POLYCARB/ABS ONLY	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$ T-MECHANICAL TEEL POLYCARB/ABS ONLY	$\mathbf{G}, \mathbf{P} \& \mathbf{R}$ SERIES

TERMINATION AND LABEL DESIGNATION
00 - Standard skive (See Fig 4)
Recognized: No Label
C1-120 VAC Series plug (See Fig 1) Listed: Label on 6' min. cord
F1-120 VAC Series plug (See Fig 1) Listed: Label on Float - 6' min. cord
R1-120 VAC Series plug (See Fig 1) Recognized: No Label - 6' min. cord
C2-240 VAC Series plug (See Fig 2) Listed: Label on 6' min. cord
F2-240 VAC Series plug (See Fig 2) Listed: Label on Float - 6' min. cord
R2-240 VAC Series plug (See Fig 2) Recognized: No Label - 6' min. cord
03-3 Pin barrel plug (See Fig 3) Recognized: No Label
FO - Standard skive (See Fig 4) Recognized: Label on Float

GOLD PLATED SWITCH COMMONLY USED FOR INTRINSICALLY SAFE APPS. RATINGS: $160 \mu \mathrm{~A}$ TO 100 mA

CONTACTS
O - Normally Open
C - Normally Closed
D - Double Throw

CORD LENGTH
From 01 to 50 feet. Lengths are in even foot increments.

CORD TYPE AND MATERIAL
Y - 18 Gauge - Chlorinated polyethylene CPE Jacketed (SJOW) W - 16 Gauge - Chlorinated polyethylene CPE Jacketed (SJOW) U - 14 Gauge - Chlorinated polyethylene CPE Jacketed (SJOW) T-16 Gauge - Teflon TFE Jacketed
P - 12 Gauge - Chlorinated polyethylene CPE Jacketed (SJOW) N-16 Gauge - Chlorinated polyethylene CPE Jacketed (SJOOW) L-16 Gauge - Chlorinated polyethylene CPE Jacketed (SOOW)

FIG. 4

FIG. 3

3 PIN BARREL PLUG

BLACK STANDARD SKIVE

Installation Instructions

1. Attach cord, using a cable tie, to any convenient rigid surface as illustrated. This is known as the tether point. Do not tighten until both turn-on and turn-off levels are established.
2. To adjust greater distance between turn-on and turn-off, increase cord length between tether point and float. For less distance between turn-on and turn-off decrease cord
3. Make sure the float is at least 2 inches above pump base, in the turn-off position, before tightening cable tie at the tether point.
4. Plug piggy-back switch cord (Series Plug) into grounded outlet, then plug into piggy-back switch cord, and check for proper operation.

Typical Normally Open (Pump Down) Application

LIQUID LEVEL CONTROL FLOAIIS

Mercury Floats

A Series

10° Narrow Angle Operation 1 AMP @ 120 VAC

B Series
90° Operating Angle
1 AMP @ 120 VAC

D Series

30° Operating Angle 13 AMPS @ 120 VAC 6 AMPS @ 240 VAC with 16 GA. cord

E Series
90° Operating Angle 13 AMPS @ 120 VAC 6 AMPS @ 240 VAC with 16 GA. cord

Mechanical Floats

S Series
90° Operating Angle 5 AMPS @ 120/240 VAC 5 AMPS @ 30 VDC

X Series

15° Narrow Operating Angle
5 AMPS @ 120/240 VAC
5 AMPS @ 30 VDC

G Series

90° Operating Angle
1/2 H.P. @ 120/240 VAC
15 AMPS @ 120/240 VAC w/ 14 GA. cord
13 AMPS @ 120/240 VAC w/ 16 GA. cord
58.8 AMPS overload

L Series

90° Operating Angle
1 H.P. @ 120 and 2 H.P. @ 240 VAC
25 AMPS @ 120/240 VAC with 12 GA. cord

P Series

25° Narrow Angle Operation
1/2 H.P. @ 120/240 VAC
15 AMPS @ 120/240 VAC with 14 GA. cord 13 AMPS @ 120/240 VAC with 16 GA. cord 58.8 AMPS overload

H Series

90° Operating Angle
1 H.P. @ 120 and 2 H.P. @ 240 VAC
15 AMPS @ 120/240 VAC with 14 GA. cord 96 AMPS overload

N Series

35° Narrow Angle Operation 10 AMPS @ 120/240 VAC 1/4 H.P. @ 120/240 VAC 34.8 AMPS overload

R Series

Tetherless with Internal Weight Narrow Angle Operation 1/2 H.P. @ 120/240 VAC
15 AMPS @ 120/240 VAC with 14 GA. cord 13 AMPS @ 120/240 VAC with 16 GA. cord 58.8 AMPS overload

K Series

Tetherless with Internal Weight
Narrow Angle Operation 10 AMPS @ 120/240 VAC
1/4 H.P. @ 120/240 VAC
34.8 AMPS overload

FILE \#E-93774

FILE \#E-93774

Based on SJOW cord @ $65^{\circ} \mathrm{F}$
Flexibility of wire varies
Test in actual application to verify

MDI Tether Clamp is a nice and simple way to mount your float switch to a pipe, either with a cable tie or pipe clamp. It can be used on 12-2 to 18-2 cords (14-3 to 18-3 with the 3 conductor cord).
TC (Includes the clamp, bolt and nut)
TC-1 (Includes the clamp, bolt, nut and $2^{11 / 2 "}$ max. Pipe clamp)
TC-2 (Includes the clamp, bolt, nut and $31 / 2$ " max." pipe clamp)
TC-10 (Includes the clamp, bolt, nut and 14" cable tie)

TETHERLESS INTERNALLY WEIGHTED
 \downarrow

W/ Stainless Steel Pipe Clamp (-01)

NUMBERING SYSTEM

$\begin{array}{ccccc}\text { VS - } 012 & 03 & R 9 & L & -01 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E}\end{array}$
A - Length of cord in inches
B - Termination; Standards are:
00-13/4" ROJ \& 3/4" Strip, or Skive (Standard)
R1 - Piggyback 120 VAC Component Recognized
C1 - Piggyback 120 VAC W/ Listed Cord Label
R2 - Piggyback 240 VAC Component Recognized
C2 - Piggyback 240 VAC W/ Listed Cord Label
03 - 3-Pin Barrel Plug Component Recognized
C3-3-Pin Barrel Plug W/ Listed Cord Label
C - Rod Length
Rod length in inches (9" is standard)
Rods available up to 24 "
D - Rod Guide
L- Lower rod guide
U - Upper rod guide
(Optional)
E - With or without Bracket, or mounting system 01 - Pipe Clamp \& Stainless Steel Bracket
02 - Pipe Clamp \& Plastic Bracket

VS SERIES SUMP PUMP SWITCH

RATINGS: 10 AMPS / 1/2 H.P. @ 120/240 V 50/60 Hz.
PUMPING RANGE: ADJUSTABLE UP TO 6 INCHES (WITH STANDARD 9" ROD LENGTH).

MATERIALS: ENCLOSURE AND GUIDE IS ABS PLASTIC. FLOAT IS BLACK POLYPROPYLENE

MOUNTING: STANDARD MOUNTING HOLES FOR \#8 SCREWS ON 2.06 INCH CENTERS ARE LOCATED UNDER HOUSING.

OPTIONAL PIPE MOUNT BRACKET
ALLOWS FOR MOUNTING TO STANDARD SIZE SUMP DISCHARGE PIPING.

OTHER OPTIONS: 15 AMPS 3/4 H.P. @ 120/240 VAC NORMALLY CLOSED \& DOUBLE THROW CONTACT THE FACTORY

FILE \#E-93774 FILE \#E-93774 FILE \#LR 41198

TWIN FLOAT CONIROL

PRODUCT DESCRIPTION:

The Twin Float pump switch consists of two floats, each float contains our standard "JH" series switch. The boot contains a heavy-duty latching relay, which enables the floats to function together. The relay eliminates pump chatter in turbulent conditions.

The unit is well suited for narrow and deep sump pump pits. On the N.O. (pump down) model, the pump is turned on when activated by the top float switch. The pump stays on until the bottom float switch turns it off, this allows a pumping range of about 12-60" with the standard 060 (60 " cord length on the bottom float). This can be extended almost indefinitely with longer cords.

Ratings:

15 AMPS @ 120 VAC
1 H.P. @ 120 VAC
OR
15 @ 240 VAC
2 H.P. @ 240 VAC

Standard colors:

Top float color indicates voltage Blue float - 120 VAC Red float - 240 VAC
Bottom float color indicates action Graphite - Pump Down (Normally Open) Yellow - Pump Up (Normally Closed)

NUMBERING SYSTEM

JTFD	060	U	15	01
A	B	C	\mathbf{D}	\mathbf{E}

A - Switch Action
D - Pump Down (Normally Open)
U - Pump Up (Normally Closed)
B - Bottom Float Cord Length
12 " increments, min. length $12^{\prime \prime}$ 060 is our standard 60" length
C - Cord Types (Currently 14 AWG only)
U-14 AWG CPE jacketed SJOW cord
D - Power Cord Length in Feet
E - Power Cord (14 AWG PVC)
00 - Standard Skive
01-120 VAC, 15 AMP piggyback
02-240 VAC, 15 AMP piggyback

HOW TO ORDER

Specify as shown below.

MOUNTING CLIPS
$\begin{array}{ll}\text { PART NO. } & \text { FOR } \\ \text { PM-348-36 } & \text { TS-1, TS-1-L1 } \\ \text { PM-348-44 } & \text { TS-10, TS-10-L1 } \\ \text { PM-348-50 } & \text { TS-1C-L1 } \\ \text { PM-348-62 } & \text { TS-10C-L1, TS-20C-L1 }\end{array}$

For Mercury Free Switches Contact the Factory

SWITCHES

TS-1 Tilt Switch 10°
WATS-1 Wide Angle Tilt Switch 90°

TS-1-3
WATS-1-3
Printed circuit mountable Tilt Switch

TS-1-6
WATS-1-6

Standard

RATINGS

TS-1 \& WATS-1 1 AMP @ 120 VAC / 1 AMP @ 28 VDC
TS-1C-L*

TS-10 Tilt Switch 10°
TS-20 Tilt Switch 10°

RATINGS TS-10 10 AMPS @ 120 VAC

NATS-20

Narrow Angle Tilt Switch 30°
WATS-20
Wide Angle Tilt Switch 90°

RATINGS

NATS-20 \& WATS-20
13 AMPS @ 120 VAC 6 AMPS @ 240 VAC

TOS-12-2
Tip Over Switch 25°

1.02" DIA. $171^{\prime \prime} \mathrm{X} .375^{\prime \prime}$

- 171^{n} OBROUND

TOS-12
12 AMPS @ 120 VAC 25° Tip Over Angle
15° \& 45° TOS- 12 \&
Mercury Free Available
Contact the factory

Damper Arm Tilt Switch

TOS-12
Omni Directional Operating Angle

-L1 = 6" LEADS

- L2 $=12$ " LEADS
-L3 = 18" LEADS
$-L 4=24 "$ LEADS
(CONTINUES IN 6" INCREMENTS)

WATS-1 WATS-20

TS-1, TS-10, TS-20
Operating Angle
Recommended operating angle for good switch open and closure conditions.

NATS-20
Operating Angle

TYPICAL APPLICATIONS

FOR MDI'S MERCURY DISPLACEMENT CONTACTORS

LIGHTING

Auditorium Lighting Beacons and Search Lights
Copy Equipment
Dimmer Controls
Display Signs
Emergency Lighting
Flood Lights
High Intensity Lamps
Hospital Lighting
Lighting Test Panels
Mercury Vapor Lamps
Parking Lots
Photography Lighting
Scoreboards
Sodium Vapor Lamps
Stage Lighting
Street Lighting
Surgical Lighting Control
Tower Lights
Traffic Signal
Tungsten Lamps

GENERAL APPLICATIONS

Air Conditioning
Alarm Systems
Automatic Door Closers
Battery Chargers
Blue Print Machines
Copiers
Computer Power Supplies

Corrosive Locations
Dusty, Oil Locations
Dry Cleaning Equipment
Energy Management Systems
Farm Incubators and Brooders
Low Voltage Switching
Marking and Engraving Equipment
Motor Starting
Soldering Systems
Surgical Equipment
Telephone Switching
Test Panels
Vapor Degreasers
X-Ray Machine Controls
ELECTRIC HEATERS
Baseboard Heaters
Blow Molding
Cabinet Heaters
Chemical Tank Heaters
Curing Furnaces
Drying Ovens
Duct Heaters
Film Packaging
Glass Furnaces
Heat Lamps
Heat Sealing Machines
Induction Heater
Industrial Ovens
Infrared Heaters
Ink Drying

Ink Heating
Injection Molding Machines
Kilns
Lab Ovens
Packaging Equipment
Plastic Extruders
Pool Heaters
Quartz Heaters
Radiant Heaters
Roof Top Heating
Shrink Tunnels
Unit Heaters
Vacuum Forming
FOOD INDUSTRY EQUIPMENT
(Heaters)
Baking Ovens
Coffee Urns
Deep Fryers
Dishwashers
Electric Grills
Electric Ranges
Pizza Ovens
Steam Generators
SPECIALTY APPLICATIONS
Capacitor Discharge Systems
Hazardous Locations
Mining Equipment
Phase Converters
Tower Control

WARRANTY

Mercury Displacement Industries, Inc., warrants it's products to be free from defects in material
or workmanship for one year, and will replace any units with such defects. Warranty is void if
units are improperly applied. Mercury Displacement Industries, Inc. shall not be liable for special or consequential damages.

SOUTHWEST HEATER AND CONTROLS

10610 Control Place, Dallas Texas 75238
Main\# 214-340-7500 Toll Free\#: 800-687-2220 EMAIL: sales@swhc.com WEB: www.swhc.com

